DOI: http://dx.doi.org/10.18782/2320-7051.2304

International Journal of Pure & Applied

Bioscience

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **4 (3):** 130-135 (2016)

Research Article

Isolation and Purification of Cuticle Degrading Extra Cellular Proteases from Entomopathogenic Fungal Species of *Beauveria bassiana*

A.G. Vikhe¹*, N.S. Dale², R.B. Umbarkar³, G.B. Labade⁴, A.R. Savant⁵, and A.A. Walunj⁶

¹Research Scholar, ²Associate Professor of Entomology, ³Associate Professor of Agronomy,

⁴Assistant Professor of Botany, ⁵Assistant Professor of Plant Biotechnology,

⁶Assistant Professor of Plant Pathology and Microbiology

Department of Agril. Entomology, College of Agriculture and Agril. Biotechnology, LONI-413736

Tal- Rahata, Dist-Ahmednagar, Maharashtra India

*Corresponding Author E-mail: akshay.vikhe99@gmail.com

Received: 5.06.2016 | Revised: 16.06.2016 | Accepted: 18.06.2016

ABSTRACT

The entomotoxic protein of Beauveria bassiana (Bals.) (Ascomycota:Hypocreales) was precipitated with 90% saturated $(NH_4)2SO_4$ and the precipitate was eluted in Sephadex G-25 column. The protein content was higher (0.026 µg/ml) supported by UV spectroscopy absorbance. The vibration frequency in FT-IR appeared between the ranges of 1650–1580cm-¹ due to N-H bond formation for amines. Bioassays of Beauveria bassiana reveal that caused significantly higher insecticidal activity.Amylase, Protease and Lipase (digestive enzymes), Esterase, Glutathione S-Tranferase and Lactate dehydrogenase level/activity in insects. Hence, the Beauveria bassiana was subjected to sodium dedosyl sulphate–poly-acrylamide gel electrophoresis (SDS-PAGE)

Key word: Beauveria bassiana, Protein Extraction, FT-IR, SDS-PAGE

INTRODUCTION

Crop protection plays a paramount and integral role in modern day agricultural production. Indiscriminate use of synthetic pesticides results in drastic problems such as environmental pollution, health hazards etc in humans. One of the proven technically and commercially sustainable options for crop protection proved is the use of biocontrol agents. *Beauveria bassiana* (Bals.) Vuillemin is one of the well-understood and widely used entomopathogenic fungi infecting wide range of economic pests mainly belonging to Lepidoptera, Coleoptera and Hymenoptera. It is a soil born pathogen of many insect pests, and its potential as a microbial

insecticide has heightened interest in its ecology in soils. As there are ample evidences that the commercial insecticides can inhibit growth of fungi in in vitro and in vivo conditions, the problem of understanding compatibility of the latter with chemical pesticides remain pressing. Moorhouse¹³ studied the effect of Dichlorvos and Triazophos on the growth of B.bassiana and observed complete inhibition in growth at ten times the recommended rate. According to Reddy¹⁶ in vitro growth and conidial germination was not effected by nematicide in entomopathogenic fungi.

Cite this article: Vikhe, A.G., Dale, N.S., Umbarkar, R.B., Labade, G.B., Savant, A.R. and Walunj, A.A., Isolation and Purification of Cuticle Degrading Extra Cellular Proteases from Entomopathogenic Fungal Species of *Beauveria bassiana*, *Int. J. Pure App. Biosci.* **4(3):** 130-135 (2016). doi: http://dx.doi.org/10.18782/2320-7051.2304

Vikhe *et al*

The differences in pathogenecity as well as to other abiotic stress are signs of naturally occurring genetic variation during co-evolution of the fungus and its host and might be relevant if the fungus is to be developed as a mycopesticide. Analyzing total soluble protein patterns of the isolates may give insight regarding differences between tolerant and less tolerant isolates of B. bassiana at biochemical level. In the present study isolates of B. bassiana were evaluated for compatibility with four commonly used organophosphorous pesticide compounds with an objective to understand the threshold concentrations of test chemical permitting survival of biocontrol agent. Further, SDS-PAGE was performed to study total soluble mycelial protein profiles among the two categories in order to understand differences if any at biochemical level.

MATERIALS AND METHODS

Fungal cultures

B. bassiana isolates used in the present study were isolated from National Fungal Cultural Collection of INDIA (NFCCI) from PUNE, India. Pure cultures were established and maintained on PDA (Potato Dextrose Agar) slants.

Isolation of culture filtrate

The *Beauveria bassiana* was grown on the PDB (Potato Dextrose Broth) And PDYB (Potato Dextrose Yeast Broth) Media and keep in Growth room for 20 days after inoculation.

Biochemical Analysis

Preparation of protein sample

After 20 days of growth on PDB (Potato Dextrose Broth) and PDYB (Potato Dextrose Yeast Broth) medium, semi-liquid culture was filtered by suction through no. 1 filter paper (Whatman Ltd. Kent, England). The filtrate was passed through 0.45 μ m pore size filter (Millipore Corp), fungal matt was separated and freeze dried at -4⁰ C (LG, Japan). This was used to produce entomotoxin and subsequently used to assay the virulence of the toxin. Protein from the dried fungal matt was ground with 90% ice cold saturated (NH₄)2SO₄ solution (681gL⁻¹) for protein precipitation. The precipitated protein was collected by centrifugation at 8000 rpm for 30 minutes. The crude protein was subjected to a

gel filtration through a Sephadex G-25 (Sigma) column (1 x 10 cm) in 50 mM tris/HCl buffer at PH 8.

UV-spectroscopy analysis

The fungal protein fractions collected through Sephadex G-25 column were analyzed using UV spectrometer (Schumadzu, Japan) to determine protein content. The samples were prepared by mixing 100 μ l of aliquots with 2 ml of distilled water. The pre-run Tris HCl buffer through Sephadex G-25 column sample was used as the blank. The base line was corrected with the blank solution between 600 nm and 100 nm. The absorbance peak reading of the each fraction was recorded categorized in it.

Fourier Transform Infrared Spectroscopy (FT-IR) analysis

FT-IR spectra of *Beauveria bassiana* was determined on a FTIR spectrometer in the range of 4000–400cm⁻¹ with a resolution of 4 cm⁻¹.The FT-IR was carried out for each sample separately for the identification of possible resonance vibration of chemical bonds.

SDS-PAGE

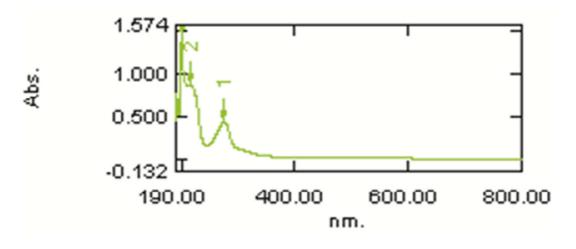
Tricine-SDS-PAGE was used to determine number and relative molecular weight of polypeptides/proteins found in the B. bassiana entomotoxins. All solutions and reagents were prepared according to ¹⁷. A 16% separating gel (pH 8.2) was prepared from N, N'-methylene Bisacrylamidestock solution (49.5% T, 3% C). Similarly gel buffer stock solution (3.0M Tris and 0.3% SDS, pH 8.2); anode electrophoresis buffer (2M Tris pH 8.9) and cathode electrophoresis buffer (0.1M Tris, 0.1M Tricine, and 0.1% SDS pH 8.2) were prepared. Acrylamide stock solution [Acrylamide (49.5%), methylene bis acrylamide (3%C) and keep at 4[°]C]; gel buffer (pH 8.4) [3.0M Tris and 0.3% SDS kept at room temperature], Glycerol 70%, cathode buffer (Upper buffer) pH 8.2 (1M Tris, 1M Tricine, 1% SDS and keep in RT), anode buffer (lower buffer) pH 8.9 (2.1M Tris keep in RT), Ammonium per sulphate (APS) [APS 10% kept at 4[°]C] and TEMED were prepared and used for this study.

Equal amount of 20 uL entomotoxin was denatured into the buffer solution of 100% Glycerol, 2-Mercaptoethanol, 20% SDS and 1M Tris at pH 6.8, and then loaded to gels. A

Vikhe *et al*

Int. J. Pure App. Biosci. 4 (3): 130-135 (2016)

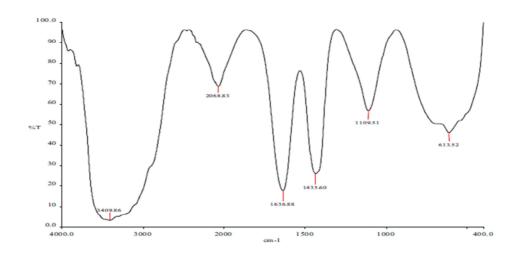
constant voltage of 30 V was maintained until the samples concentrated on the stacking gel, before adjusting the voltage to 80 V for the remaining separation time.

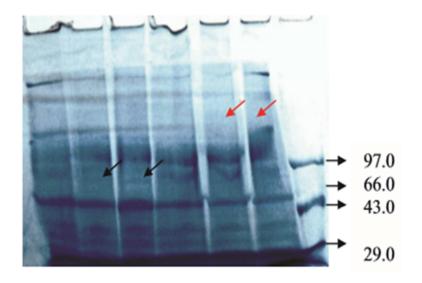

Electrophoretic separations were maintained for 7-8 hrs with 25 mA/gel stable current. The gel was stained overnight in 0.1% Coomassie Blue R-250 (in 30% methanol, 10% acetic acid) and then destained. After destaining, the gel was placed in 7.5% acetic acid for preservation and imaged with Olympus camera attached to Gel documentation unit

(Biotech, Yerkard, India) with D-Gel Das software.

Purification of entomotoxin

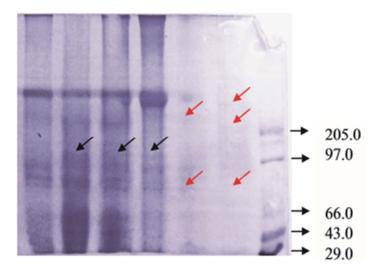
The toxic protein of *B. bassiana* was precipitated with 90% (NH₄)2SO₄ and the precipitate was eluted from Sephadex G-25 column. Totally 12mL elutes (each 1 mL) were collected, separated primarily and analyzed by UV visible spectroscopy. It was observed that the total protein surface plasmon resonance band occurs initially at 210 nm. The proteins surface plasmon band recorded between 210-280 nm in an aqueous medium. Based on the UV absorption the eluents.


RESULTS


Fourier Transform Infrared Spectroscopy (FT-IR) analysis

FTIR analysis reveals that the *Beauveria* bassiana show characteristic vibration between

1637 - 1639 cm⁻¹(N-H for amines) and also between 1435 - 1440 cm⁻¹ for (C-H for methyl group)



Vikhe *et al* SDS-PAGE - Entomotoxin

The SDS-PAGE analyses of FI, FII and FIII revealed that the fractions contain different polypeptides having low molecular

polypeptides, isolated through Sephadex G-25 Column of *Beauveria bassiana* contains a single band (M.W. -10656)

DISCUSSION

Naturally occurring entomopathogenic fungi are regulatory important factors in insect populations. Many species are employed as biological control agents of insect pestsunder field and glasshouse orchards, crops, ornamentals, range, and lawn, stored products, and forestry and also used in vector insects of veterinary and medical importance. Protein absorbs strongly at 280 nm due to a number of its constituent amino acids. The peptide bonds

Copyright © June, 2016; IJPAB

found in the amino acids also absorb at 205 nm. In the present study the Sephadex column fraction was analyzed by UV-visible spectroscopy. The result confirms that the fractions showed the absorption of proteins. In another analysis, the samples were subjected to FT-IR spectra. When the purification/specificity of the polypeptide increased, the quantity of protein content decreased. The same findings were proved in the present study. The entomotoxin of *B. bassiana* showed high of proteins content. The spectrum results showed the presence of proteins as secondary amines. Previous reports showed that the filamentous fungi like B. bassiana had been shown to contain multiple types of enzymes presence of protein in the metabolic mixture of Fusarium oxysporm which was identified using FT-IR spectra at the absorption range of 1500-1600 cm⁻¹. Present results also confirm the presence of protein in the range of 1400-1600 cm^{-1} in *B*. bassiana toxic fractions in the form of secondary amines/amides. FT-IR spectroscopy is a sensitive method to analyses the presence of protein in the fungal metabolites. In the present fractions, the peaks represent not only secondary amines, but also the presence of alcohols (3300- 3400 cm^{-1}), ketons (1100-1200 cm⁻¹) and aldehydes (600-700 cm⁻¹) with respective ranges.

REFERENCES

- Alves, S.B. and Carvalho, S.M., Revista de- Agriculturae – piracicaba., 55(3): 133-138 (1980).
- Alves, S.B., Entomopathogenic fungi. In S.B. Alves (ed.) Microbial Control inset.Fundacao de Estudos Luiz de Queiroz Agricultural (FEALQ) Piracicaba, Sao Paulo Brazil. 289-370 (1998).
- Cagan, L. and Svercel, M., The influence of ultraviolet on pathogenicity of entomppathogenic fungus Beauvaria bassiana (Balsamo) Vullmen to the european corn borer, Ostrinianubilalis HBN. J. of Central Agriculture, 2(3-4): 227-233 (2001).
- Chelico, L., Haughian J.L., Woytowich A.E. and Khachaourians G.G. quantification of ultraviolet-C irradication induced cyclobutane pyrimidine dimers and their removal in Beauvaria bassiana conidiospore DNA. Mycologia, **97(3):** 621-627 (2005).
- Costa, H.S., Robb K.L. and Wilen A.A. Increased persistence of Beauvaria bassiana spore viability under high ultraviolet-blcking greenhouse. *Hortscience.*, 36: 1082-1084 (2001).
- 6. Eid, F.M., Survey of the insect pests infesting olive with reference to 249 the

olive fruitfly, Bactroceraoleae 250 Gmel and parasitoid in North Simi. *J Agric. Sci. Mansoura. Univ.* **28:** 8461- 8469 (2003)

- Eleanor and Lockwood, J. Inv Path., 57: 7-16 (1991)
- 8. Feng, M.G., Poprawski, T.J. and Khachatourians, G.G., Production, formulation and application of the entomopathogenic fungus Beauvaria bassiana for insect control.Current Status.Biosci. Control Techno., 4: 3-34 (1994).
- Gardner, W.A., Sutton, R.M. and Noblet, R. Persistence of Beauveria bassiana, Nomuraearileyi, and Nosemanecatrix on soybean foliage. *Environ Entomol.*, 6: 616– 618 (1977).
- Inglis, G.D., Goettel, M.S. and Johnson, D.L., Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. *Biol. Control.*, 5: 581-590 (1995).
- Matter, M.M., Shahira, S. Marei, Moawad S.M., El-Gengaihi S. The reaction of Aphis gossypii and its predator, Coccinellaun decimpunctatato some plant extracts. *Bull. Fac. Agri.Cairo.* 44: 413–432(1993)
- Montiel, A.O. and Jones, A., Alternative methods 277 for controlling the 278 olive fly Bactroceraoleae, involving 279 semiochemicals. *IOBC wprs Bull.* 25: 1-11 (2002)
- Moorhouse, E.R, Gillespie, A.T., Sellers, E.K. and Charnley, A.K., *Biocon science and tech*, 2: 49-58 (1992)
- 14. QiaoMeihua, Daniel E, Snyder Jeffery, Meyer Alan G Z, MeihauQiao, Sonya J.G, Larry R, Cruthers Robyn L, Slone Davide R, Young W. Preliminary Studies on the effectiveness of the novel pulicide, spinosad, for thetreatment and control of fleas on dogs". Veterinary Parasitology. Retrieved 3 May 2012.; 3(2): 345–351 (2007).
- Quintela, E.D., McCoy CW. Effect of imidacloprid on development locomotory response and survival of first instars of Diaprepesabbreniatus. *J Econ Ent.*; 90: 988-995 (1997)

Vikhe *et al*

- 16. Reddy, P.P. and Khan, R.M., *Pakistan Journal of Nematology*, **7(1):** 55-59 (1989).
- Sabbour, M.M., Sahab, A.F., Efficacy of some microbial control agents against Agrotisipsilon and Heliothisarmigera in Egypt. Bull NRC Egypt.; 13(33): 165-174 (2007).
- Shimizu, S., Yoshioka H and Matsumoto T., Letters in Applied microbiology, 16:4, 183-186 (1993).
- Tabar, H.S., Velez, A.P. and Montoya, R.E., Field evaluation of one isolate of the fungus Beauvaria bassiana selected by resistance to ultraviolet light. *Revista Colombiana de Entomologia*, 24(3-4): 157-163 (1998).
- 20. Terribile, S., Monteiro de Barros N, *Revistade-Microbiological.*, **23:1** 48-50 (1991).